Observadores de Rindler

El tratamiento de los observadores uniformemente acelerados en el espacio-tiempo de Minkowski se realiza habitualmente usando las llamadas coordenadas de Rindler para dicho espacio, un observador acelerado queda representado por un sistema de referencia asociado a unas coordenadas de Rindler. Partiendo de las coordenadas cartesianas la métrica de dicho espacio-tiempo:
 ds^2 = -c^2dT^2 + dX^2 + dY^2 + dZ^2, \qquad (T, X, Y, Z)\in\R^4
Considérese ahora la región conocida como "cuña de Rindler", dada por el conjunto de puntos que verifican:
\mathcal{R}_{Rind} = \{(T,X,Y,Z)\in\R^4|\ 0 < X < \infty, \; -X < T < X\}
:
Donde:
\alpha\,, es un parámetro relacionado con la aceleración del observador.1
(t,x,y,z)\,, son las coordenadas temporal y espaciales medidas por dicho observador.
Usando estas coordenadas, la cuña de Rindler del espacio de Minkowski tiene una métrica, expresada en las nuevas coordenadas, dada por la expresión:
 ds^2 = e^\frac{2\alpha x}{c^2}(-dt^2+dx^2)+dy^2+dz^2, \qquad (t, x, y, z) \in \times\R^4
Puede que estas coordenadas representen a un observador acelerado según el eje X, cuya cuadriaceleración obtenida como derivada covariante de la cuadrivelocidad está relacionada con el valor de la coordenada x:
 \nabla_{\mathbf{e}_0} \mathbf{e}_0 = \alpha e^{-\frac{\alpha x}{c^2}}\ \mathbf{e}_1, \qquad
\mathbf{a} = (a^0; a^1, a^2, a^3) = \left(0; \alpha e^{-\frac{\alpha x}{c^2}}, 0, 0\right)

1 comentario:

  1. Un cordial saludo. Respecto al tema de las "coordenadas de Rindler" (y la "Paradoja de Bell"), resulta que si Einstein se hubiera inspirado en estos efectos asociados con la Relatividad Especial en lugar de su clásico experimento del "observador en caída libre", habría deducido su Principio de Equivalencia, según el cual las fuerzas de marea se explican por la compresión del espacio-tiempo en lugar de la curvatura. (diazreyesjosealberto62@gmail.com)

    ResponderEliminar