Observadores de Rindler

El tratamiento de los observadores uniformemente acelerados en el espacio-tiempo de Minkowski se realiza habitualmente usando las llamadas coordenadas de Rindler para dicho espacio, un observador acelerado queda representado por un sistema de referencia asociado a unas coordenadas de Rindler. Partiendo de las coordenadas cartesianas la métrica de dicho espacio-tiempo:
 ds^2 = -c^2dT^2 + dX^2 + dY^2 + dZ^2, \qquad (T, X, Y, Z)\in\R^4
Considérese ahora la región conocida como "cuña de Rindler", dada por el conjunto de puntos que verifican:
\mathcal{R}_{Rind} = \{(T,X,Y,Z)\in\R^4|\ 0 < X < \infty, \; -X < T < X\}
:
Donde:
\alpha\,, es un parámetro relacionado con la aceleración del observador.1
(t,x,y,z)\,, son las coordenadas temporal y espaciales medidas por dicho observador.
Usando estas coordenadas, la cuña de Rindler del espacio de Minkowski tiene una métrica, expresada en las nuevas coordenadas, dada por la expresión:
 ds^2 = e^\frac{2\alpha x}{c^2}(-dt^2+dx^2)+dy^2+dz^2, \qquad (t, x, y, z) \in \times\R^4
Puede que estas coordenadas representen a un observador acelerado según el eje X, cuya cuadriaceleración obtenida como derivada covariante de la cuadrivelocidad está relacionada con el valor de la coordenada x:
 \nabla_{\mathbf{e}_0} \mathbf{e}_0 = \alpha e^{-\frac{\alpha x}{c^2}}\ \mathbf{e}_1, \qquad
\mathbf{a} = (a^0; a^1, a^2, a^3) = \left(0; \alpha e^{-\frac{\alpha x}{c^2}}, 0, 0\right)

No hay comentarios:

Publicar un comentario